
www.manaraa.com

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303841773

Ur/Web Programing Language: a brief overview

Article · June 2016

CITATIONS

0
READS

469

2 authors, including:

Some of the authors of this publication are also working on these related projects:

Real Time Sign Language Processing System View project

A New Bit-level Columnar Transposition Encryption Algorithm View project

Asoke Nath

St. Xavier's College, Kolkata

267 PUBLICATIONS 1,889 CITATIONS

SEE PROFILE

All content following this page was uploaded by Asoke Nath on 08 June 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/303841773_UrWeb_Programing_Language_a_brief_overview?enrichId=rgreq-85080c9c03880b36c52328d2376eeaa2-XXX&enrichSource=Y292ZXJQYWdlOzMwMzg0MTc3MztBUzozNzA1OTYyNTgwNDE4NTZAMTQ2NTM2ODQ0MTU4Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/303841773_UrWeb_Programing_Language_a_brief_overview?enrichId=rgreq-85080c9c03880b36c52328d2376eeaa2-XXX&enrichSource=Y292ZXJQYWdlOzMwMzg0MTc3MztBUzozNzA1OTYyNTgwNDE4NTZAMTQ2NTM2ODQ0MTU4Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Real-Time-Sign-Language-Processing-System?enrichId=rgreq-85080c9c03880b36c52328d2376eeaa2-XXX&enrichSource=Y292ZXJQYWdlOzMwMzg0MTc3MztBUzozNzA1OTYyNTgwNDE4NTZAMTQ2NTM2ODQ0MTU4Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/A-New-Bit-level-Columnar-Transposition-Encryption-Algorithm?enrichId=rgreq-85080c9c03880b36c52328d2376eeaa2-XXX&enrichSource=Y292ZXJQYWdlOzMwMzg0MTc3MztBUzozNzA1OTYyNTgwNDE4NTZAMTQ2NTM2ODQ0MTU4Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-85080c9c03880b36c52328d2376eeaa2-XXX&enrichSource=Y292ZXJQYWdlOzMwMzg0MTc3MztBUzozNzA1OTYyNTgwNDE4NTZAMTQ2NTM2ODQ0MTU4Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Asoke-Nath-4?enrichId=rgreq-85080c9c03880b36c52328d2376eeaa2-XXX&enrichSource=Y292ZXJQYWdlOzMwMzg0MTc3MztBUzozNzA1OTYyNTgwNDE4NTZAMTQ2NTM2ODQ0MTU4Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Asoke-Nath-4?enrichId=rgreq-85080c9c03880b36c52328d2376eeaa2-XXX&enrichSource=Y292ZXJQYWdlOzMwMzg0MTc3MztBUzozNzA1OTYyNTgwNDE4NTZAMTQ2NTM2ODQ0MTU4Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/St-Xaviers-College-Kolkata?enrichId=rgreq-85080c9c03880b36c52328d2376eeaa2-XXX&enrichSource=Y292ZXJQYWdlOzMwMzg0MTc3MztBUzozNzA1OTYyNTgwNDE4NTZAMTQ2NTM2ODQ0MTU4Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Asoke-Nath-4?enrichId=rgreq-85080c9c03880b36c52328d2376eeaa2-XXX&enrichSource=Y292ZXJQYWdlOzMwMzg0MTc3MztBUzozNzA1OTYyNTgwNDE4NTZAMTQ2NTM2ODQ0MTU4Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Asoke-Nath-4?enrichId=rgreq-85080c9c03880b36c52328d2376eeaa2-XXX&enrichSource=Y292ZXJQYWdlOzMwMzg0MTc3MztBUzozNzA1OTYyNTgwNDE4NTZAMTQ2NTM2ODQ0MTU4Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

www.manaraa.com

 International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: 2349-2763
 Issue 05, Volume 3 (May 2016) www.ijirae.com

IJIRAE: Impact Factor Value – SJIF: Innospace, Morocco (2015): 3.361 | PIF: 2.469 | Jour Info: 4.085 |

Index Copernicus 2014 = 6.57
© 2014- 16, IJIRAE- All Rights Reserved Page -66

Ur/Web Programing Language: a brief overview

Sweta Chakraborti* Asoke Nath
Department of Computer Science Department of Computer Science

St. Xavier’s College(Autonomous) St. Xavier’s College(Autonomous)
30 Park Street, Kolkata, India 30 Park Street, Kolkata, India

Abstract— This papert defines different components of Ur/Web programming language. Web programming has
gradually evolved from a document delivery platform to architecture for distributed programming. Ur/Web, a domain-
specific, statically typed functional programming language with a much simpler model for programming modern Web
applications. Ur/Web’s model is unified, where programs in a single programming language are compiled to other
“Web standards” languages as needed; supports novel kinds of encapsulation of Web-specific state; and exposes
simple concurrency, where programmers can reason about distributed, multithreaded applications.

Keywords— Web Porgramming Language;HTML-SQL; encapsulation; transactions;remote procedure calls;

I. INTRODUCTION

Ur is a programming language has introduced richer type system features into functional programming in the traditional
form of ML and Haskell. Ur is functional, statically typed. Ur supports a meta-programming based on type-level
computation with type-level records. Ur/Web is Ur plus a special standard library and associated rules for optimized result.
Ur/Web supports construction of dynamic web applications backed by SQL databases. The signature of the standard
library is such that well-typed Ur/Web programs is error free in a very broad sense. In process of particular page
generations, it does not suffer from any kinds of code-mismatch, dead intra-application links and does not return to invalid
HTML and SQL queries. It sets out in an orderly or improper manner in communication with SQL databases or between
browsers and web servers and this considered to be basic foundation of the Ur/Web methodology. It is also possible to use
meta-programming to build significant application pieces by analysis of type structure. The type system guarantees that the
admin interface sub-application that remains be free of the bugs irrespective of well-typed table description input. These
compiled programs will often be even more efficient than what most programmers would bother to write in C. The
compiler also generates JavaScript versions of client-side code, with no need to write those parts of applications in a
different language.[1]

II. NOVELTY AND GENERAL OVERVIEW OF UR/WEB

Ur/Web delivers a simple programming model retaining the essence of the Web as an application platform, from

the standpoints of security and performance.

An application is a program in one language (Ur/Web) that runs on one server and many clients, with automatic
compilation of parts of programs into the languages appropriate to the different nodes (e.g., JavaScript). Clients may
often deviate arbitrarily from provided code to run while the server is under the programmer’s control. For reasons of
performance scaling or reliability, multiple physical machines might be used to implement server functionality. [2]

All objects passed between parts of the application are strongly typed. Applications may be written with no explicit
marshaling or other conversion of data between formats. Where snippets of code appear as first-class values, they are
presented as abstract syntax trees, ruling out flaws like code injection vulnerabilities that rely on surprising consequences
of concatenating code-as-strings. The only persistent state in the server sits in an SQL database, accessed through a
strongly typed SQL interface. The server exposes a set of typed functions that are callable remotely. Interaction begins
with the application in a new browser tab by making a remote procedure call to one of these functions, with arbitrary
correctly typed arguments. The server runs the associated function atomically, with no opportunity to observe
interference by any other concurrent operations, generating an HTML page that the client displays. The HTML page in a
client may contain traditional links to other pages, which are represented as suspended calls to other remotely callable
functions, to be forced when a link is followed, to generate the new HTML page to display.

HTML page may also contain embedded Ur/Web code that runs in the client. Such code may produces as many client

side threads at its convenience and the threads obey a cooperative multithreading semantics, where one thread runs at a
time, and threads may be switched during well-defined blocking operations. Threads may modify the GUI shown to the
user, via a functional-reactive programming system that mixes dataflow programming with imperative callbacks.[2][3]

www.manaraa.com

 International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: 2349-2763
 Issue 05, Volume 3 (May 2016) www.ijirae.com

IJIRAE: Impact Factor Value – SJIF: Innospace, Morocco (2015): 3.361 | PIF: 2.469 | Jour Info: 4.085 |

Index Copernicus 2014 = 6.57
© 2014- 16, IJIRAE- All Rights Reserved Page -67

Client-side thread code may also make blocking remote procedure calls treated similarly to those for regular links.
Such a call may return a value of any function-free type, not just HTML pages; and the thread receiving the function
result may compute with it to change the visible GUI programmatically, rather than by loading a completely new page.
As before, every remote procedure call appears to execute atomically on the server.

Server code may allocate typed message-passing channels, which may be both stored in the database and returned to

clients via remote function calls. The server may send values to a channel, and a client that has been passed the channel
may receive those values asynchronously. Channel sends are included in the guarantee of atomicity for remote calls on
the server; all sends within a single call execution appear to transfer their messages to the associated channels
atomically[2][3].

The fundamental procedure and basic components are discussed here briefly

HTML AND SQL

Mainstream modern Web applications manipulate code in many different languages and protocols. Ur/Web hides
most of them within a unified programming model. Two languages explicitly exposed i.e. HTML, for describing the
structure of Web pages as trees, and SQL, for accessing a persistent relational database on the server. In contrast to
mainstream practice, Ur/Web represents code fragments in these languages as first-class, strongly typed values. Type
system of Ur to define rich syntax tree types, where the generic type system is sufficient to enforce the typing rules of the
embedded languages, HTML and SQL.

Programmers may benefit from that style of more precise type-checking. On the other hand, more complex static
checking of XML may be more difficult for programmers to understand. An additional benefit of Ur/Web’s approach is
that XML checking need not be built into the language but is instead encoded as a library using Ur’s rich but general-
purpose type system.

Here is an example of HTML and SQL respectively.[1]

funmain () = return <xml>
<head>
<title>Hello world!</title>
</head>

<body>
<h1>Hello world!</h1>
</body>
</xml>

Tablet : { A : int, B : float, C : string, D : bool }
PRIMARYKEYA

funlist () =
rows<- queryX (SELECT * FROM t)
 (fn row =><xml><tr>
<td>{[row.T.A]}</td><td>{[row.T.B]}</td><td>{[row.T.C]}</td><td>{[row.T.D]}</td>
<td><form><submit action={delete row.T.A} value="Delete"/></form></td>
</tr></xml>);
return<xml>
<table border=1>
<tr><th>A</th><th>B</th><th>C</th><th>D</th></tr>
{rows}
</table>

<hr/>

www.manaraa.com

 International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: 2349-2763
 Issue 05, Volume 3 (May 2016) www.ijirae.com

IJIRAE: Impact Factor Value – SJIF: Innospace, Morocco (2015): 3.361 | PIF: 2.469 | Jour Info: 4.085 |

Index Copernicus 2014 = 6.57
© 2014- 16, IJIRAE- All Rights Reserved Page -68

<form>
<table>
<tr><th>A:</th><td><textbox{#A}/></td></tr>
<tr><th>B:</th><td><textbox{#B}/></td></tr>
<tr><th>C:</th><td><textbox{#C}/></td></tr>
<tr><th>D:</th><td><checkbox{#D}/></td></tr>
<tr><th/><td><submit action={add} value="Add Row"/></td></tr>
</table>
</form>
</xml>

andadd r =
dml (INSERTINTO t (A, B, C, D)
VALUES ({[readErrorr.A]}, {[readErrorr.B]}, {[r.C]}, {[r.D]}));
xml<- list ();
return<xml><body>
<p>Row added.</p>

{xml}
</body></xml>

Anddelete a () =
dml (DELETEFROM t
WHEREt.A = {[a]});
xml<- list ();
return<xml><body>
<p>Row deleted.</p>

{xml}
</body></xml>

funmain () =
xml<- list ();
return<xml><body>
{xml}
</body></xml>

B. Addition of more Encapsulation

Lack of encapsulation in a large traditional application is not appreciated so functionality should be modularized,
e.g. into classes implementing data structures. The general model is that the SQL database is a preexisting resource, and
any part of the application may create an interface to any part of the database. Therefore it is analogize in such a scheme
to an object-oriented language where all class fields are public; it forecloses on some very useful styles of modular
reasoning.

C. Client-Side GUI Scripting

Extension takes advantage of client-side scripting to make applications more responsive, without the need to
load a completely fresh page after every user action. Mainstream Web applications are scripted with JavaScript, but, as in
Links and similar languages, Ur/Web scripting is done in the language itself, which is compiled to JavaScript as needed.
Following is an example of client–side GUI.

sequenceseq

fun increment () = nextvalseq

fun main () =
src<- source 0;
return<xml><body>
<dyn signal={n <- signal src; return <xml>{[n]}</xml>}/>
<button value="Update" onclick={fn _ => n <- rpc (increment ()); set src n}/>
</body></xml>

www.manaraa.com

 International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: 2349-2763
 Issue 05, Volume 3 (May 2016) www.ijirae.com

IJIRAE: Impact Factor Value – SJIF: Innospace, Morocco (2015): 3.361 | PIF: 2.469 | Jour Info: 4.085 |

Index Copernicus 2014 = 6.57
© 2014- 16, IJIRAE- All Rights Reserved Page -69

D.Reactive GUIs
Ur/Web GUI programming follows the functional-reactive style. The visible page is described via dataflow, as a

pure function over some primitive streams of values. Ur/Web adopts a less pure style, where the event callbacks of
imperative programming is retained. These callbacks modify data sources, which are a special kind of mutable reference
cells. The only primitive streams are effectively the sequences of values that data sources take on, where new entries are
pushed into the streams mostly via imperative code in callbacks.

E. Remote Procedure Calls

To write an application that runs within a single page another way for this application is to contact the server, to
trigger state modifications and receive updated information. Ur/Web’s first solution to that problem is remote procedure
calls (RPCs), allowing client code to run particular function calls as if they were executing on the server, with access to
shared database state. Client code only needs to wrap such calls to remotely callable functions within the RPC keyword,
and the Ur/Web implementation takes care of all network communication and marshaling. Following is an example of
RPC.
structureRoom = Broadcast.Make(struct
typet = string
end)

sequence s
table t : { Id : int, Title : string, Room : Room.topic }
PRIMARYKEY Id

fun chat id () =
 r <- oneRow (SELECTt.Title, t.RoomFROM t WHEREt.Id = {[id]});
ch<- Room.subscriber.T.Room;

newLine<- source "";
buf<- Buffer.create;

let
funonload () =
let
fun listener () =
 s <- recvch;
Buffer.writebuf s;
listener ()
in
listener ()
end

fungetRoom () =
 r <- oneRow (SELECTt.RoomFROM t WHEREt.Id = {[id]});
returnr.T.Room

fun speak line =
room<- getRoom ();
Room.send room line

fundoSpeak () =
line<- get newLine;
setnewLine "";
rpc (speak line)
in
return<xml><bodyonload={onload ()}>
<h1>{[r.T.Title]}</h1>

<button value="Send:" onclick={fn _ =>doSpeak ()}/><ctextbox source={newLine}/>

www.manaraa.com

 International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: 2349-2763
 Issue 05, Volume 3 (May 2016) www.ijirae.com

IJIRAE: Impact Factor Value – SJIF: Innospace, Morocco (2015): 3.361 | PIF: 2.469 | Jour Info: 4.085 |

Index Copernicus 2014 = 6.57
© 2014- 16, IJIRAE- All Rights Reserved Page -70

<h2>Messages</h2>

<dyn signal={Buffer.renderbuf}/>

</body></xml>
end

fun list () =
queryX' (SELECT * FROM t)
 (fn r =>
count<- Room.subscribersr.T.Room;
return<xml><tr>
<td>{[r.T.Id]}</td>
<td>{[r.T.Title]}</td>
<td>{[count]}</td>
<td><form><submit action={chat r.T.Id} value="Enter"/></form></td>
<td><form><submit action={delete r.T.Id} value="Delete"/></form></td>
</tr></xml>)

and delete id () =
dml (DELETEFROM t WHERE Id = {[id]});
main ()

and main () =
let
fun create r =
id<- nextval s;
room<- Room.create;
dml (INSERTINTO t (Id, Title, Room) VALUES ({[id]}, {[r.Title]}, {[room]}));
main ()
in
ls<- list ();
return<xml><body>
<h1>Current Channels</h1>

<table>
<tr><th>ID</th><th>Title</th><th>#Subscribers</th></tr>
 {ls}
</table>

<h1>New Channel</h1>

<form>
 Title: <textbox{#Title}/>

<submit action={create}/>
</form>
</body></xml>
end

F. Message-Passing from Server to Client

Web browsers make it natural for clients to contact servers via HTTP requests, but the other communication direction
may also be useful. Real-world applications often use a technique called long polling, where a client opens a connection
and is willing to wait an arbitrary period of time for the server’s response. The server can hold all of these long-poll
connections open until there is a new event to distribute. The mechanics are standardized in recent browsers with the
WebSockets protocol, providing an abstraction of bidirectional streams between clients and servers. Ur/Web presents an
alternative abstraction (implemented with long polling) where servers are able to send typed messages directly to clients.

www.manaraa.com

 International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: 2349-2763
 Issue 05, Volume 3 (May 2016) www.ijirae.com

IJIRAE: Impact Factor Value – SJIF: Innospace, Morocco (2015): 3.361 | PIF: 2.469 | Jour Info: 4.085 |

Index Copernicus 2014 = 6.57
© 2014- 16, IJIRAE- All Rights Reserved Page -71

III. CONCLUSION AND FUTURE SCOPE

A fundamental tension in the design of programming languages is between the convenience of high-level abstractions
and the performance of low-level code. Optimizing compilers help bring the best of both worlds. It has been shown how
an optimizing compiler can provide very good server-side performance for dynamic Web applications compiled from a
very high-level functional language, Ur/Web, based on dependent type theory. Some of optimization techniques are
domain-agnostic, as in compile-time elimination of higher-order features. Other crucial techniques are domain-specific,
as in understanding generation of HTML pages, database queries, and their effect interactions. With all these features
combined, the Ur/Web compiler produces servers are efficient and that outperform all of the most popular Web
frameworks. Ur/Web has also been used successfully in deployed applications. The techniques suggested are simple
enough to re-implement routinely for a variety of related domain-specific functional languages [3].

REFERENCES
[1] http://impredicative.com/ur/
[2] Chlipala, Adam. The Ur/Web Manual. 2016
[3] Chlipala, Adam. "Ur/Web: A Simple Model for programming the Web." The 42nd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL '15), January 15-17, 2015, Mumbai, India.

View publication statsView publication stats

https://www.researchgate.net/publication/303841773

